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Abstract

In this poster, we present the work of Klainerman and Mache-
don “On the uniqueness to solutions of the Gross-Pitaevskii Hie-
rarchy."

Gross-Pitaevskii Hierarchy

For k ≥ 1, consider functions γ(k)(t,xk,x′k) : R×R3k×R3k→ C
such that

γ
(k)(t,xk,x′k) = γ(k)(t,x′k,xk)

and

γ
(k)(t,xσ(1), . . . ,xσ(k),x

′
σ(1), . . . ,x

′
σ(k)) = γ

(k)(t,x1, . . . ,xk,x′1, . . . ,x
′
k)

for any permutation σ .
The GP Hierarchy is the following many body system :{

(i∂t +∆
(k)
± )γ(k) = ∑

k
j=1 B j,k+1(γ

(k+1))

γ(k)(0,xk,x′k) = γ(k)(xk,x′k)
, (1)

where ∆
(k)
± = ∆xk−∆x′k, and B j,k+1γ(k+1)(t,xk+1,x′k+1) is a linear

operator defined by

γ
(k+1)(t,xk,x j,x′k,x j)− γ

(k+1)(t,xk,x′j,x
′
k,x′j).

A special solution to the GP Hierarchy is given by

γ
(k)(t,xk,x′k) =

k

∏
j=1

φ(t,x j)φ(t,x′j),

where φ satisfies the cubic NLS in R3

(i∂t +∆)φ = |φ |2φ , φ(0,x) = φ0(x) ∈ H1(R3).

Uniqueness

Theorem 1. Consider solutions γ(k)(t,xk,x′k) of the GP Hierarchy
with zero initial conditions, which verify the space-time estimates∫ T

0

∥∥∥R(k)B j,k+1γ
(k+1)(t, ·, ·)

∥∥∥
L2(R3k×R3k)

≤Ck, (2)

for some C > 0 and all j ≤ k ∈ N, where R(k) = ∏
k
1(−∆x j)

1/2 ·
∏

k
1(−∆x′j

)1/2. Then ‖R(k)γ(k)(t, ·, ·)‖L2(R3k×R3k) = 0 for all k, t.

Applying Strichartz estimates, one can verify that the special so-
lution ∏

k
j=1 φ(t,x j)φ(t,x′j) with H1 data obeys the space-time esti-

mate (2) ; therefore, it is the unique solution to the GP hierarchy.

Iterated Duhamel Expansion

From zero initial data, iterating Duhamel’s formula n times, we
get

γ
(1)(t1, ·) =

∫ t1

0
ei(t1−t2)∆

(1)
±

1

∑
j=1

B j,2(γ
(2))(t1, ·) dt2

=
∫ t1

0

∫ t2

0
· · ·
∫ tn

0
ei(t1−t2)∆

(1)
±

1

∑
j=1

B j,2 · ei(t2−t3)∆
(2)
±

2

∑
j=1

B j,3 · · ·

=
∫ t1

0

∫ t2

0
· · ·
∫ tn

0
∑

µ∈Mn+1

J(−−→tn+1; µ)d~t

where Mn+1 is the set of all maps µ : {2, · · ·n+1}→ {1, · · ·n} such
that µ(k)< k for all k and J(−−→tn+1; µ) is the integrand corresponding
to the map µ .

The overall strategy

– Obtain linear estimates on the linear operators.
– Regrouping the n! integrals into classes using “combinatorial

board game” such that the integral values are preserved in the
same equivalence class.

– Bound the number of the classes as well as the sum of integrals
in individual classes.

– Establish uniqueness over all small time intervals, then iterate.

Linear estimates

Lemma 2. There exists a constant L, independent of j,k, such that

‖R(k)B j,k+1(γ
(k+1))‖L2(R×R3k×R3k) ≤ L‖R(k+1)γ

(k+1)
0 ‖L2(R3(k+1)×R3(k+1)).

The setup of the board game

To every integral

I(µ,σ) =
∫

t1≥tσ(2)···≥tσ(n+1)

ei(t1−t2)∆
(1)
± Bµ(2),2ei(t2−t3)∆

(2)
± Bµ(3),3 · · ·d~t

we associate a “game board" of the form

I(µ,σ)↔



tσ−1(2) tσ−1(3) tσ−1(4) · · · tσ−1(n+1)
Bµ(2),2 B1,3 Bµ(4),4 · · · Bµ(n+1),n+1 row 1

0 Bµ(3),3 B2,4 · · · B2,n+1 row 2
0 0 B3,4 · · · B3,n+1 row 3
· · · · · · · · · · · · · · ·
0 0 0 · · · Bn,n+1 row n

column 2 column 3 column 4 · · · column n+1



The regrouping of game boards

Our goal here is to transform any given game board via finitely
many acceptable moves to a game board in an upper echelon form.
An acceptable move exchanges the “cross positioned" highligh-
ted entries in columns and rows j and j + 1 at the same time if
µ( j+1)< µ( j). For instance,

t2 t3 t4 t5
B1,2 B1,3 B1,4 B1,5 R1

0 B2,3 B2,4 B2,5 R2
0 0 B3,4 B3,5 R3
0 0 0 B4,5 R4

C2 C3 C4 C5


−→



t2 t4 t3 t5
B1,2 B1,3 B1,4 B1,5 R1

0 B2,3 B2,4 B2,5 R2
0 0 B3,4 B3,5 R3
0 0 0 B4,5 R4

C2 C3 C4 C5


.

The importance of the acceptable move is that it transfers the in-
tegral region while preserving the integral, i.e. I(µ, id) = I(µs,σ),
where µs is an upper echelon form.

Lemma 3. (Board Game) Let µs be a special, upper echelon ma-
trix, and write µ ∼ µs if µ can be reduced to µs in finitely many
acceptable moves. There exists Ds a subset of [0, t1]n such that

∑
µ∼µs

∫ t1

0
· · ·
∫ tn

0
J(−−→tn+1; µ)d~t =

∫
Ds

J(−−→tn+1; µs)d~t

Here Ds is the union of all disjoint integral regions {t1 ≥ tσ(2) ≥
tσ(3) ≥ ·· · tσ(n+1)} for all permutations σ which occur in a given
class of µs.

The transformation of the integral region

The essence of this Board Game is that for a given class, the ac-
ceptable moves preserve the value of integral while changing the
integral regions. Thus, we can transfer integrals over the same re-
gion with different integrands to a single integral whose integral
region is the disjoint union of integral regions produced by the ac-
ceptable moves.

For example, consider the case n = 3, t1 = 1, where all possible
transformed integral regions are

{1≥ t2 ≥ t3 ≥ t4 ≥ 0},{1≥ t3 ≥ t2 ≥ t4 ≥ 0}, · · · .
In general, Ds (a subset of [0, t1]n) is just the disjoint union of some
n-simplices.

The counting of upper echelon matrices

We claim the following two results of crucial importance :
– For each element of Mn+1 there is a finite set of acceptable

moves which brings it to the upper echelon form.
– Let Cn be the number of n× n upper echelon matrices. Then

Cn < 4n.
The proof is of combinatorial nature.

Proof of Theorem 1

Applying the board game strategy (Lemma 3), we write γ(1)(t1, ·)
as a sum of at most 4n terms of the form∫

Ds

J(−−→tn+1; µs)d~t. (3)

Applying Minkowski’s inequality and commuting Fourier multi-
pliers, we get

‖
∫

Ds

J(−−→tn+1; µs)d~t‖L2(R3×R3)

= ‖R(1)
∫

Ds

ei(t1−t2)∆
(1)
± B1,2ei(t2−t3)∆

(2)
± Bµs(3),3 · · · d~t‖L2(R3×R3)

≤
∫
[0,t1]n
‖R(1)B1,2ei(t2−t3)∆

(2)
± Bµs(3),3 · · ·‖L2(R3×R3)d~t.

Using the Cauchy-Schwartz inequality in t and Lemma 2 (linear
estimates) n−1 times, we have∫
[0,t1]n
‖R(1)B1,2ei(t2−t3)∆

(2)
± Bµs(3),3 · · ·‖L2(R3×R3)d~t

≤
√

t1
∫
[0,t1]n−1

‖R(1)B1,2ei(t2−t3)∆
(2)
±
(
Bµs(3),3 · · ·

)
‖L2((t2∈[0,t1])×R3×R3)d~t

· · ·

≤ (L
√

t1)n−1
∫ t1

0
‖R(n)Bµs(n+1),n+1γ

(n+1)(tn+1, ·)‖L2(R3n×R3n)dtn+1

≤Cn(L
√

t1)n−1.

Consequently,

‖R(1)
γ
(1)(t1, ·)‖L2(R3×R3) ≤ 4nCn(L

√
t1)n−1.

When 4CL
√

t1 < 1, as n→ ∞, ‖R(1)γ(1)(t1, ·)‖L2(R3×R3)→ 0. Si-
milarly, we can prove γ(k) = 0 for all k ≥ 1. Continuing this way,
we get that γ(k) = 0 for all t ≥ 0, which proves the uniqueness.
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