On the Uniqueness of Solutions to the Gross-Pitaevskii Hierarchy
 X. Wan, K. Widmayer, S. Xu, K. Yamazaki, K. Yang, Z. Zhao, C. Zhou Advisor : Nataša Pavlović, Nikolaos Tzirakis

Dispersive PDE Program, MSRI, June 2014

In this poster, we present the work of Klainerman and Machedon "On the uniqueness to solutions of the Gross-Pitaevskii Hierarchy."

Gross-Pitaevskii Hierarchy For $k \geq 1$, consider functions $\gamma^{(k)}\left(t, \mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right): \mathbb{R} \times \mathbb{R}^{3 k} \times \mathbb{R}^{3 k} \rightarrow \mathbb{C}$ such that $\gamma^{(k)}\left(t, \mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right)=\overline{\gamma^{(k)}\left(t, \mathbf{x}_{k}^{\prime}, \mathbf{x}_{k}\right)}$ and $\gamma^{(k)}\left(t, x_{\sigma(1)}, \ldots, x_{\sigma(k)}, x_{\sigma(1)}^{\prime}, \ldots, x_{\sigma(k)}^{\prime}\right)=\gamma^{(k)}\left(t, x_{1}, \ldots, x_{k}, x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ for any permutation σ. The GP Hierarchy is the following many body system : $\left\{\begin{array}{l} \left(i \partial_{t}+\Delta_{ \pm}^{(k)}\right) \gamma^{(k)}=\sum_{j=1}^{k} B_{j, k+1}\left(\gamma^{(k+1)}\right), \tag{1}\\ \gamma^{(k)}\left(0, \mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right)=\gamma^{(k)}\left(\mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right) \end{array}\right.$ where $\Delta_{ \pm}^{(k)}=\Delta_{\mathbf{x}_{k}}-\Delta_{\mathbf{x}^{\prime}}$, and $B_{j, k+1} \gamma^{(k+1)}\left(t, \mathbf{x}_{k+1}, \mathbf{x}_{k+1}^{\prime}\right)$ is a linear operator defined by $\gamma^{(k+1)}\left(t, \mathbf{x}_{k}, x_{j}, \mathbf{x}_{k}^{\prime}, x_{j}\right)-\gamma^{(k+1)}\left(t, \mathbf{x}_{k}, x_{j}^{\prime}, \mathbf{x}_{k}^{\prime}, x_{j}^{\prime}\right) .$ A special solution to the GP Hierarchy is given by $\gamma^{(k)}\left(t, \mathbf{x}_{k}, \mathbf{x}_{k}^{\prime}\right)=\prod_{j=1}^{k} \phi\left(t, x_{j}\right) \overline{\phi\left(t, x_{j}^{\prime}\right)},$	

where ϕ satisfies the cubic NLS in \mathbb{R}^{3}
$\left(i \partial_{t}+\Delta\right) \phi=|\phi|^{2} \phi, \quad \phi(0, x)=\phi_{0}(x) \in H^{1}\left(\mathbb{R}^{3}\right)$.

Uniqueness

Theorem 1. Consider solutions $\gamma^{(k)}\left(t, \mathbf{x}_{k}, \mathbf{x}_{k}{ }_{k}\right)$ of the GP Hierarchy with zero initial conditions, which verify the space-time estimates

$$
\int_{0}^{T}\left\|R^{(k)} B_{j, k+1} \gamma^{(k+1)}(t, \cdot \cdot \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \times \mathbb{R}^{3 k}\right)} \leq C^{k}
$$

for some $C>0$ and all $j \leq k \in \mathbb{N}$, where $R^{(k)}=\prod_{1}^{k}\left(-\Delta_{x_{j}}\right)^{1 / 2}$. $\Pi_{1}^{k}\left(-\Delta_{x_{j}^{\prime}}\right)^{1 / 2}$. Then $\left\|R^{(k)} \gamma^{(k)}(t, \cdot, \cdot)\right\|_{L^{2}\left(\mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)}=0$ for all k, t.

Applying Strichartz estimates, one can verify that the special solution $\prod_{j=1}^{k} \phi\left(t, x_{j}\right) \overline{\phi\left(t, x_{j}^{\prime}\right)}$ with H^{1} data obeys the space-time estimate (2) ; therefore, it is the unique solution to the GP hierarchy.

Iterated Duhamel Expansion

From zero initial data, iterating Duhamel's formula n times, we get

$$
\begin{aligned}
& \gamma^{(1)}\left(t_{1}, \cdot\right)=\int_{0}^{t_{1}} e^{i\left(t_{1}-t_{2}\right) \Delta_{ \pm}^{(1)}} \sum_{j=1}^{1} B_{j, 2}\left(\gamma^{(2)}\right)\left(t_{1}, \cdot\right) d t_{2} \\
& =\int_{0}^{t_{1}} \int_{0}^{t_{2}} \cdots \int_{0}^{t_{n}} e^{i\left(t_{1}-t_{2}\right) \Delta_{ \pm}^{(1)}} \sum_{j=1}^{1} B_{j, 2} \cdot e^{i\left(t_{2}-t_{3}\right) \Delta_{ \pm}^{(2)}} \sum_{j=1}^{2} B_{j, 3} \cdots \\
& =\int_{0}^{t_{1}} \int_{0}^{t_{2}} \cdots \int_{0}^{t_{n}} \sum_{\mu \in M_{n+1}} J\left(\overrightarrow{t_{n+1}} ; \mu\right) d \vec{t}
\end{aligned}
$$

where M_{n+1} is the set of all maps $\mu:\{2, \cdots n+1\} \rightarrow\{1, \cdots n\}$ such that $\mu(k)<k$ for all k and $J\left(\overrightarrow{t_{n+1}} ; \mu\right)$ is the integrand corresponding to the map μ

The overall strategy

Obtain linear estimates on the linear operators.

- Regrouping the n ! integrals into classes using "combinatorial board game" such that the integral values are preserved in the same equivalence class.
- Bound the number of the classes as well as the sum of integrals in individual classes
Establish uniqueness over all small time intervals, then iterate.

Linear estimates

Lemma 2. There exists a constant L, independent of j, k, such that $\left\|R^{(k)} B_{j, k+1}\left(\gamma^{(k+1)}\right)\right\|_{L^{2}\left(\mathbb{R} \times \mathbb{R}^{3 k} \times \mathbb{R}^{3 k}\right)} \leq L\left\|R^{(k+1)} \gamma_{0}^{(k+1)}\right\|_{L^{2}\left(\mathbb{R}^{3(k+1)} \times \mathbb{R}^{3}(k+1\right.}$

he regrouping of game boards

Our goal here is to transform any given game board via finitely many acceptable moves to a game board in an upper echelon form. An acceptable move exchanges the "cross positioned" highlighted entries in columns and rows j and $j+1$ at the same time if $\mu(j+1)<\mu(j)$. For instance
$\left(\begin{array}{cccc}t_{2} & t_{3} & t_{4} & t_{5} \\ B_{1,2} & B_{1,3} & B_{1,4} & B_{1,5} \mathrm{R} 1 \\ 0 & B_{2,3} & B_{2,4} & B_{2,5} \mathrm{R} 2 \\ 0 & 0 & B_{3,4} & B_{3,5} \mathrm{R} 3 \\ 0 & 0 & 0 & B_{4,5} \mathrm{R} 4 \\ \mathrm{C} 2 & \mathrm{C} 3 & \mathrm{C} 4 & \mathrm{C} 5\end{array}\right) \longrightarrow\left(\begin{array}{cccc}t_{2} & t_{4} & t_{3} & t_{5} \\ B_{1,2} & B_{1,3} & B_{1,4} & B_{1,5} \\ R 1 \\ 0 & B_{2,3} & B_{2,4} & B_{2,5} \\ R 2 \\ 0 & 0 & B_{3,4} & B_{3,5} \\ R 3 \\ 0 & 0 & 0 & B_{4,5} \\ R 4 \\ C 2 & C 3 & C 4 & C 5\end{array}\right)$

The importance of the acceptable move is that it transfers the integral region while preserving the integral, i.e. $I(\mu, \mathrm{id})=I\left(\mu_{s}, \sigma\right)$, where μ_{s} is an upper echelon form.
Lemma 3. (Board Game) Let μ_{s} be a special, upper echelon matrix, and write $\mu \sim \mu_{s}$ if μ can be reduced to μ_{s} in finitely many acceptable moves. There exists D_{s} a subset of $\left[0, t_{1}\right]^{n}$ such that

$$
\sum_{\mu \sim \mu_{s}} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n}} J\left(\overrightarrow{t_{n+1}} ; \mu\right) d \vec{t}=\int_{D_{s}} J\left(\overrightarrow{t_{n+1}} ; \mu_{s}\right) d \vec{t}
$$

Here D_{s} is the union of all disjoint integral regions $\left\{t_{1} \geq t_{\sigma(2)} \geq\right.$ $\left.t_{\sigma(3)} \geq \cdots t_{\sigma(n+1)}\right\}$ for all permutations σ which occur in a given class of $\mu_{\text {s }}$

The transformation of the integral region

The essence of this Board Game is that for a given class, the acceptable moves preserve the value of integral while changing the integral regions. Thus, we can transfer integrals over the same region with different integrands to a single integral whose integral region is the disjoint union of integral regions produced by the acceptable moves.
For example, consider the case $n=3, t_{1}=1$, where all possible transformed integral regions are
$\left\{1 \geq t_{2} \geq t_{3} \geq t_{4} \geq 0\right\},\left\{1 \geq t_{3} \geq t_{2} \geq t_{4} \geq 0\right\}, \cdots$
In general, D_{s} (a subset of $\left[0, t_{1}\right]^{n}$) is just the disjoint union of some n-simplices.

The counting of upper echelon matrices

We claim the following two results of crucial importance

- For each element of M_{n+1} there is a finite set of acceptable moves which brings it to the upper echelon form.
Let C_{n} be the number of $n \times n$ upper echelon matrices. Then $C_{n}<4^{n}$
The proof is of combinatorial nature

Proof of Theorem 1

Applying the board game strategy (Lemma 3), we write $\gamma^{(1)}\left(t_{1}, \cdot\right)$ as a sum of at most 4^{n} terms of the form

$$
\begin{equation*}
\int_{D_{s}} J\left(\overrightarrow{t_{n+1}} ; \mu_{s}\right) d \vec{t} \tag{3}
\end{equation*}
$$

Applying Minkowski's inequality and commuting Fourier multipliers, we get

$$
\begin{aligned}
& \left\|\int_{D_{s}} J\left(\overrightarrow{t_{n+1}} ; \mu_{s}\right) d \vec{t}\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} \\
& =\left\|R^{(1)} \int_{D_{s}} e^{i\left(t_{1}-t_{2}\right) \Delta_{ \pm}^{(1)}} B_{1,2} e^{i\left(t_{2}-t_{3}\right) \Delta_{ \pm}^{(2)}} B_{\mu_{s}(3), 3} \cdots d \vec{t}\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} \\
& \leq \int_{\left[0, t_{1}\right]^{n}}\left\|R^{(1)} B_{1,2} e^{i\left(t_{2}-t_{3}\right) \Delta_{ \pm}^{(2)}} B_{\mu_{s}(3), 3} \cdots\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} d \vec{t} .
\end{aligned}
$$

Using the Cauchy-Schwartz inequality in t and Lemma 2 (linear estimates) $n-1$ times, we have
$\int_{\left[0, t_{1}\right]^{n}}\left\|R^{(1)} B_{1,2} e^{i\left(t_{2}-t_{3}\right) \Delta_{ \pm}^{(2)}} B_{\mu_{s}(3), 3} \cdots\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} d \vec{t}$
$\leq \sqrt{t_{1}} \int_{\left[0, t_{1}\right]^{n-1}}\left\|R^{(1)} B_{1,2} e^{i\left(t_{2}-t_{3}\right) \Delta_{ \pm}^{(2)}}\left(B_{\mu_{s}(3), 3} \cdots\right)\right\|_{L^{2}\left(\left(t_{2} \in\left[0, t_{1}\right]\right) \times \mathbb{R}^{3} \times \mathbb{R}^{3}\right)} d \vec{t}$
$\leq\left(L \sqrt{t_{1}}\right)^{n-1} \int_{0}^{t_{1}}\left\|R^{(n)} B_{\mu_{s}(n+1), n+1} \gamma^{(n+1)}\left(t_{n+1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3 n} \times \mathbb{R}^{3 n}\right)} d t_{n+1}$ $\leq C^{n}\left(L \sqrt{t_{1}}\right)^{n-}$
Consequently,
$\left\|R^{(1)} \gamma^{(1)}\left(t_{1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} \leq 4^{n} C^{n}\left(L \sqrt{t_{1}}\right)^{n-1}$.
When $4 C L \sqrt{t_{1}}<1$, as $n \rightarrow \infty,\left\|R^{(1)} \gamma^{(1)}\left(t_{1}, \cdot\right)\right\|_{L^{2}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)} \rightarrow 0$. Similarly, we can prove $\gamma^{(k)}=0$ for all $k \geq 1$. Continuing this way, we get that $\gamma^{(k)}=0$ for all $t \geq 0$, which proves the uniqueness.

